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3. It is a multiple-solution method.

4. The calculations can easily be done on a desk
calculator, and are also well adaptable to computer
programming.

The method proved successful for a projection of
the structure of L-asparagine monohydrate (De Vries,
1963), for projections of the structures of three
modifications of mesotartaric acid (Bootsma &
Schoone, 1965) and for a projection of the structure
of tartronic acid (Kroon, Kanters & Van Eyck, 1965).

APPENDIX

The value 23-1 obtained in §3 for the P¥/P* ratio
for S, is actually somewhat too high, since three of
the triple products involved are not independent,
because S3 and Ss are each present in two different
triple products. The correct value of P*/P*, which
can be obtained by calculating the probabilities for
the various sign combinations in a way analogous to
that followed in Table 1, is 21-7.

For each of the signs S3 and Sz separately, its
influence may easily be calculated as is shown here
for Ss. Instead of

828384=_838:8s

we write
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Sz x (S284=88S0) .

The term between brackets may now be considered
as one single sign, the P/P_ ratio of which is equal
to the product of the P./P_ ratios of 8284 and SsSs.
From here on the calculation of P*/P* for S; proceeds
as in § 3.

Since 83 and Ss oceur together in one triple product,
this trick can not be used for the calculation of the
influence of the two signs together. However, in most
cases the error made when the procedure of §3 is
followed (which ignores the effect of the interrelation
between the correlation equations) is rather small.

It is a pleasure to thank Prof. J. M. Bijvoet and
Prof. A. F. Peerdeman for their continuous interest
and valuable criticism.
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On the Proper Modes of Propagation of X-rays*

By EpwarDp J. Saccocrot AND ALFRED Zajact
Polytechnic Institute of Brooklyn, Brooklyn, New York 11201, U.S. A.

(Recetved 19 August 1963 and in revised form 4 March 1964)

The modes of propagation of an X-ray wave field for single diffraction are evaluated at the Bragg
angle as an illustration of a method which can be applied to simultaneous diffraction.

Introduction

The methods of the dynamical theory of X-ray
diffraction are presented extensively in established
texts (James, 1954; Zachariasen, 1945) and recently
have been subjected to some reviews (James, 1963).
The general theoretical treatment deals with cases
when any number of reciprocal lattice points enter
the Ewald sphere. However, applications of the
general results of the dynamical theory to situations
observed in practice are almost exclusively limited
to two fields, <.e. to the case when only two reciprocal
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lattice points (one of which is the origin) are on the
sphere of reflection. Such theory has been worked
out in detail. The starting and most important part
is the evaluation of the equations of the dispersion
sheets.

When considering a larger number of fields, say
three or four, the usual procedure is unwieldy. It is
rather difficult to obtain the dispersion sheets.
Considerable information can, however, be obtained
when one works exclusively under conditions when
Bragg’s law is fulfilled exactly. These conditions
correspond to the diameter points of the dispersion
sheets.

In addition, it seems to us that in the case of a
larger number of fields it is necessary to evaluate
the normal modes of vibration of the electric field
vector of the X-ray wave fields. Considerable insight
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is then gained into the whole field of multiple X-ray
diffraction theory (Zajac, Saccocio & Bindell, 1964).
We will illustrate the method of evaluating the
modes of vibration in the two field case. The purpose
of this paper is not the determination of the modes
in the two field case, since this is really known, but
rather our aim is the illustration of a method which
can be used in cases of a larger number of fields.

Theory

Let ko and kx be the propagation vectors of an X-ray
wave field inside a crystal pointing towards the two
points 0 and H of the reciprocal lattice; ko and kg
indicate the directions of incidence and diffraction
respectively (Fig. 1). Because the waves are entirely
transverse, the vibrations of the electric vector will
be confined to planes perpendicular to the propagation
vector. For reference directions in these planes we
will choose the directions specified by pairs of
orthogonal unit vectors g, o and o#, Tx respectively
as shown in Fig. 1, where the angles « and § are
with reference to the plane of incidence. As can be
seen from the figure the choice is quite arbitrary.

Tty
q0-
% k
20 a)/ o
Ty
%y 90
B
ky

Fig. 1. Wave vectors k, and ky with directions of polarization
¢ and 7t chosen arbitrarily.

Following Kato’s (1958) general formulation and
writing the component equations we have

—xDp = ggDfyr+ @aDifys

—xoDp = ¢gDFf yat+ @aDifly:

—xgDHft = @aDjoy1+ @gHgoya

—zgDif = @aDiys+ alivy: (1)
where

k2xn = kZ—k2(1— o) , 2)

and
y1 = cos 20 cos « cos f+sin & sin B = 0y . on
y2 = co0s 20 sin & sin f+cosx cos f = Mo . T
ys = —cos 20 cos & sin f+sin « cos B = oo . TH
ya = —cos 20 sin & cos f+cosx sin B =To.0om. (3)

We will determine the modes of propagation only
for the points on the dispersion sheets which satisfy
Bragg’s law exactly. Following the usual procedure,
from the equations (1) we formulate the secular
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equation in which, because we work with the diameter
points only, we set

To=ay=2x. 4)
Thus
x 0 ViQE  Y3@d
0 T VPR V2PR | _
Y19a  VaPr x 0
Y3Qu  Ve@g 0 z (5)

for which, in terms of the y’s, the four roots may be
shown to be

2 = foppa{(yi+vi+yi+yd)
[+ 73+ 13+ vD2—4(yrye—yayalt}.  (6)

From the definitions (3), these roots, or eigenvalues,
reduce to
2,2 = *(papn)?
and
3,4 = *cos 20 (prpg)t. (7)

To find the corresponding modes of propagation
we consider the ratios Dfo/Djo and DF#/ D} for each
value in (7). Thus

z \Qg  V3PgE
- Y1¢g x 0
Do DG = 1 vo#m O i
0 yvigg  yapz
Va@r z 0
Ve@g 0 x
or
2 (a2 a2 _
DDy = L= it ysyapa (8)
Pa@a(yiya+ yzys)

Using (3) this equation becomes

22— (sin? & + cos? & cos? 20)pr @5

.D" 7 —1
Ol g7 sin « cos « (1 —cos? 26)

9)

For eigenvalues
2,2 = +(pres)t,

expression (9) becomes

D/Djp = cot (10)
and for
3,4 = +cos 20(:;05995)5
we obtain
D%/DPp = —tan . (11)

The ratios DF#/D3F can be determined in the same
manner.

Conclusion and discussion

The meaning of the results will be made clear with
the help of Fig. 2(a) and (b). For the ratio given by
equation (10), we see from Fig. 2(a) that the vector Do,
as described by its components, oscillates perpen-
dicular to the plane of incidence. When equation (11)
is interpreted we obtain the result shown in Fig. 2(b),
namely that Do vibrates in the plane of incidence.
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Plane of incidence

4.:, out of paper
(a) (by

Fig. 2. Directions of vibration of D,.

The complete set of the normal modes of propagation
consists of four modes all of which are shown in
Fig. 3(a), (b), (c) and (d).

D,

20

k ko
’ ®) D,
26 20
D
D, ! D, D,

ko k, ko ko

(c) (d)
Fig. 3. Proper modes of propagation.

We have presented a method of evaluating the
normal modes of propagation in the two-field case
for the situation when Bragg’s law is fulfilled exactly.
In this case four modes exist. For ¢ fields we would
expect 2¢ modes of propagation. The same method
can be used for three, four and a larger number of
fields.

APPENDIX*

In the two field case it can readily be shown for every
point of the dispersion sheet that the states of vibration
of the eigenvectors are confined to the plane of
incidence and perpendicular to it. In this general case
equation (5) takes the form

o 0  »nes yeE
0 To  ya@E  V2PR | _
yi9g yapg  xm O '
VY3®r  YeQ®H 0 g (12)

The solution of this equation is

* This appendix has been written almost in the form
suggested by Boris W. Batterman. The authors acknowledge
this fact and thank him for other critical remarks concerning
the paper.
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zory = ypapa{yi+yi+yi+yi
+ (i + 73+ v3+ 92— 4(yrye—ysya)))} (13)
which gives
Xo¥g = QrPH (14)
and

Zorg = cos? 20pgez . (15)

The determinant of equation (12) contains the
general polarization conditions and there is no
restriction on the z’s. The two equations (14) and (15)
indicate that the two allowed wave vectors (related
to zo and xy) lie on two separate hyperbolic sheets
irrespective of the choice of the polarization direction.

The determination of the directions in which the
electric vectors vibrate for any point of the dispersion
surface readily follows. We obtain

To  Y19E  Ys@hE
— | Y197 zg 0
0
DyDg - — e —
Y198 Y3@PHE
Y4®r Tg 0
Y2Qg 0 zg
_ ToZy— ysPaYsPa— Y1PaY1PH (16)
Ye@ayePa+ V1QEYaPa
For one branch zoxg=¢gps, and
DD = cot « . (17)

i.e. the electric vector is perpendicular to the plane
of incidence (the usual ¢ state). For the other branch
xoxy=cos? 20y @5, and

DD = —tana , (18)

which means that the electric displacement vector
oscillates in the plane of incidence.

The foregoing shows that the general solution to
the linear equations describing the fields inside the
crystal (two-beam case) separates into two pairs of
dispersion surfaces, one for each of the usual polariza-
tion states; and this is independent of the initial
choice of polarization directions. Hence, this separa-
tion is valid for all incident conditions, not only at
the exact Bragg angle.

The authors thank Judith P. Aldag for helpful

discussions and suggestions.
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